Engineering Institute of Technology

 

Unit Name

ENGINEERING SURVEYING

Unit Code

BCS205S

 

Unit Duration

Term

Award

Bachelor of Science (Engineering)

 

Duration 3 years

Year Level

Two or Three

Unit Creator/Reviewer

 

Core/Elective

 

Pre/Co-requisites

BSC101C

Credit Points

3

 

Total Program Credit Points 81 (27 x 3)

Mode of Delivery

Online or On-campus

Unit Workload

(Total student workload including “contact hours” = 10 hours per week)

Pre-recordings / Lecture – 1.5 hours Tutorial – 1.5 hours

Guided labs / Group work / Assessments – 2 hours

Personal Study recommended - 5 hours

The objective in presenting this unit is to introduce students to surveying equipment, services, theory, measurement techniques, and introduce advanced engineering survey calculations.

 

Surveying is a key element in most civil engineering projects requiring the development of land and infrastructure. The services of the surveyor may be required at many stages of a construction project or project works requiring land development. At the conclusion of this unit, students will have acquired the requisite specialist knowledge to undertake many aspects of surveying work.

 

The subject matter covered in this unit will include: surveying theory and its field practices; angular and distance measurement methods; and, survey adjustment techniques to data from a survey traverse. This will be contextualised to the latest developments in digital and automation technologies.

 

Learning Outcomes

On successful completion of this Unit, students are expected to be able to:

  1. Demonstrate a broad knowledge of surveying theory and its field practices.

  2. Examine and apply angular and distance measurement methods.

  3. Examine and apply survey adjustment techniques to data from a survey traverse.

  4. Incorporate a broad knowledge of Global Positioning Systems into surveyed data.

  5. Solve plane coordinate areas and volumetric problems (in real-world earthworks applications) using an automatic level to undertake traverses by correctly reducing data.

    Completing this unit may add to students professional development/competencies by:

    1. Fostering personal and professional skills and attributes in order to:

      1. Conduct work in a professionally diligent, accountable and ethical manner.

      2. Effectively use oral and written communication in personal and professional domains.

      3. Foster applicable creative thinking, critical thinking and problem solving skills.

      4. Develop initiative and engagement in lifelong learning and professional development.

      5. Enhance collaboration outcomes and performance in dynamic team roles.

      6. Effectively plan, organise, self-manage and manage others.

      7. Professionally utilise and manage information.

      8. Enhance technologist literacy and apply contextualised technologist skills.

    2. Enhance investigatory and research capabilities in order to:

      1. Develop an understanding of systematic, fundamental scientific, mathematic principles, numerical analysis techniques and statistics applicable to technologists.

      2. Access, evaluate and analyse information on technologist processes, procedures, investigations and the discernment of technologist knowledge development.

      3. Foster an in-depth understanding of specialist bodies of knowledge, computer science, engineering design practice and contextual factors applicable to technologists.

      4. Solve basic and open-ended engineering technologist problems.

      5. Understand the scope, principles, norms, accountabilities and bounds associated with sustainable engineering practice.

    3. Develop engineering application abilities in order to:

      1. Apply established engineering methods to broadly-defined technologist problem solving.

      2. Apply engineering technologist techniques, tool and resources.

      3. Apply systematic technologist synthesis and design processes.

      4. Systematically conduct and manage technologist projects, work assignments, testing and experimentation.

The Australian Engineering Stage 1 Competency Standards for Engineering Technologists, approved as of 2013. This table is referenced in the mapping of graduate attributes to learning outcomes and via the learning outcomes to student assessment.

 

Stage 1 Competencies and Elements of Competency

1.

Knowledge and Skill Base

1.1

Systematic, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the technology domain.

1.2

Conceptual understanding of the, mathematics, numerical analysis, statistics, and computer and information sciences which underpin the technology domain.

1.3

In-depth understanding of specialist bodies of knowledge within the technology domain.

1.4

Discernment of knowledge development within the technology domain.

1.5

Knowledge of engineering design practice and contextual factors impacting the technology domain.

1.6

Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the technology domain.

2.

Engineering Application Ability

2.1

Application of established engineering methods to broadly-defined problem solving within the technology domain.

2.2

Application of engineering techniques, tools and resources within the technology domain.

2.3

Application of systematic synthesis and design processes within the technology domain.

2.4

Application of systematic approaches to the conduct and management of projects within the technology domain.

3.

Professional and Personal Attributes

3.1

Ethical conduct and professional accountability.

3.2

Effective oral and written communication in professional and lay domains.

3.3

Creative, innovative and pro-active demeanour.

3.4

Professional use and management of information.

3.5

Orderly management of self and professional conduct.

3.6

Effective team membership and team leadership.

Successfully completing this Unit will contribute to the recognition of attainment of the following graduate attributes aligned to the AQF Level 7 criteria, Engineers Australia Stage 1 Competency Standards for Engineering Technologists and the Sydney Accord:

 

Graduate Attributes

(Knowledge, Skills, Abilities, Professional and Personal Development)

EA Stage 1 Competencies

Learning Outcomes

A. Knowledge of Science and Engineering Fundamentals

A1. Breadth of knowledge of engineering and systematic, theory-based understanding of underlying principles, and depth of knowledge across one or more engineering sub- disciplines

 

1.1, 1.3

 

1, 2, 3, 4

A2. Knowledge of mathematical, statistical and computer sciences appropriate for engineering technology

 

1.2

 

1, 2, 3, 4

A3. Discernment of knowledge development within the technology domain

1.4

1, 2, 3, 4

A4. Knowledge of engineering design practice and contextual factors impacting the technology domain

 

1.5

 

2, 3, 4

B. Problem Solving, Critical Analysis and Judgement

B1. Ability to research, synthesise, evaluate and innovatively apply theoretical concepts, knowledge and approaches across diverse engineering technology contexts to effectively solve engineering problems

 

1.4, 2.1, 2.3

 

3, 4

B2. Technical and project management skills to design complex systems and solutions in line with developments in engineering technology professional practice

 

2.1, 2.2, 2.3, 3.2

 

3, 4

C. Effective Communication

C1. Cognitive and technical skills to investigate, analyse and organise information and ideas and to communicate those ideas clearly and fluently, in both written and spoken forms appropriate to the audience

 

3.2

 

1, 2, 3, 4, 5

C2. Ability to engage effectively and appropriately across a diverse range of cultures

3.2

5

D. Design and Project Management

D1. Apply systematic synthesis and design processes within the technology domain

2.1, 2.2, 2.3

1, 2, 3, 4, 5

D2. Apply systematic approaches to the conduct and management of projects within the technology domain

 

2.4

 

5

E. Accountability, Professional and Ethical Conduct

E1. Innovation in applying engineering technology, having regard to ethics and impacts including economic; social; environmental and sustainability

 

1.6, 3.1, 3.4

 

3, 4

E2. Professional conduct, understanding and accountability in professional practice across diverse circumstances including team work, leadership and independent work

 

3.3, 3.4, 3.5, 3.6

 

5

This table details the mapping of the unit graduate attributes to the unit learning outcomes and the Australian Engineering Stage 1 Competency Standards for the Engineering Technologist.

 

 

 

Graduate Attributes

A1

A2

A3

A4

B1

B2

C1

C2

D1

D2

E1

E2

 

Engineers Australia Stage 1 Competency Standards for Engineering Technologist

1.1

 

 

 

 

 

 

 

 

 

 

 

1.2

 

 

 

 

 

 

 

 

 

 

 

1.3

 

 

 

 

 

 

 

 

 

 

 

1.4

 

 

 

 

 

 

 

 

 

 

1.5

 

 

 

 

 

 

 

 

 

 

 

1.6

 

 

 

 

 

 

 

 

 

 

 

2.1

 

 

 

 

 

 

 

 

 

2.2

 

 

 

 

 

 

 

 

 

 

2.3

 

 

 

 

 

 

 

 

 

2.4

 

 

 

 

 

 

 

 

 

 

 

3.1

 

 

 

 

 

 

 

 

 

 

 

3.2

 

 

 

 

 

 

 

 

 

3.3

 

 

 

 

 

 

 

 

 

 

 

3.4

 

 

 

 

 

 

 

 

 

 

3.5

 

 

 

 

 

 

 

 

 

 

 

3.6

 

 

 

 

 

 

 

 

 

 

 

 

Unit Learning Outcomes

LO1

 

 

 

 

 

 

 

LO2

 

 

 

 

 

 

LO3

 

 

 

LO4

 

 

 

LO5

 

 

 

 

 

 

 

Student assessment

Assessment Type

When assessed

Weighting (% of total unit marks)

Learning Outcomes Assessed

 

Assessment 1

Type: Multi-choice test / Group work / Short answer questions / Practical / Remote Lab / Simulation

Example Topic: surveying, Error and uncertainty, Measurement Techniques

Students may complete a quiz with MCQ type answers and solve some simple equations to demonstrate a good understanding of the fundamental concepts.

 

Week 3

 

15%

 

1

 

Assessment 2

Type: Multi-choice test / Group work / Short answer questions / Practical / Remote Lab / Simulation

Example Topic: Error and uncertainty, Measurement Techniques, Levelling, Distance measurement

Students may be asked to provide solutions to simple problems on various topics.

 

Week 6

 

20%

 

1, 2

 

Assessment 3

Type: Multi-choice test / Group work / Short answer questions / Practical / Remote Lab / Simulation / Project

/ Report

Example Topics: Distance measurement, Angular Measurement, Conventional control surveys

Students may complete a quiz with MCQ type answers or solve some simple problems or use software to complete a practical.

 

Week 10

 

20%

 

3, 4

 

Assessment 4 Type: Examination All topics

An examination with a mix of detailed report type questions and/or simple numerical problems to be completed in 3 hours.

 

Final Week

 

40%

 

1 to 5

 

Attendance / Tutorial Participation

Example: Presentation, discussion, group work, exercises, self-assessment/reflection, case study analysis, application.

Continuous

5%

1 to 5

Prescribed and recommended readings

 

Required textbook(s)

Schofield, W & Breach M, 2007, Engineering Surveying, 7th Edition, Elsevier Linacre House, Jordan Hill, Oxford OX2 8DP, UK. ISBN–13: 978-0-7506-6949-8

 

Reference Materials

McCormac, JC, Sarasua, W & Davis, W 2012, Surveying, 6th Edition, Wiley, Hoboken, NJ.

Uren, J & Price, WF 2006, Surveying for engineers, 4th Edition, Palgrave MacMillan, Basingstoke, England.

 

Unit Content:

One topic is delivered per contact week, with the exception of part-time 24-week units, where one topic is delivered every two weeks.

 

Topic 1

 

Basic concepts of surveying

Definition – Principles – Basic measurements – Control networks – Locating position – Plotting detail – Summary

 

Topic 2

 

Error and uncertainty

Units of measurement – Significant figures – Rounding numbers – Errors in measurement – Indices of precision – Weight – Rejection of outliers – Combination of errors

 

Topic 3

 

Measurement Techniques

Taping, ordinary levelling, theodolite observation, trigonometric heighting.

 

Topics 4 & 5

Levelling

Introduction – Levelling – Definitions – Curvature and refraction – Equipment – Instrument adjustment – Principle of levelling – Sources of error – Closure tolerances – Error distribution

– Levelling applications – Reciprocal levelling – Precise levelling – Digital levelling – Trigonometrical levelling – Heighting with GPS

 

Topics 6 & 7

Distance measurement

Tapes – Field work – Distance adjustment – Errors in taping – Accuracies –

Electromagnetic distance measurement (EDM) – Measuring principles – Meteorological corrections – Geometrical reductions – Errors, checking and calibration – Other error sources

– Instrument specifications – Developments in EDM

 

Topics 8 & 9

Angular Measurement

The theodolite – Instrumental errors – Instrument adjustment – Field procedure – Measuring angles – Sources of error

 

Topic 10

Conventional control surveys

Plane rectangular coordinates – Traversing – Triangulation – Networks

 

Topic 11

Earthworks

Areas – Partition of land – Cross-sections – Dip and strike – Volumes – Mass-haul diagrams

 

Topic 12

Unit Review

In the final week, students will have an opportunity to review the contents covered so far. Opportunity will be provided for a review of student work and to clarify any outstanding issues.

Contact Us

OC-180219:134838

Engineering Institute of Technology - Latest News

  • University teams design with nature in mind

    Feb 19, 2018 | 06:51 am

    University teams design with nature in mind Students and professors in research and development teams in the United States are setting the standard for nature-inspired engineering designs. Using nature as an influence for design, and using engineering design to better understand nature, may produce fruitful outcomes for engineering and nature alike.A mechanical engineering team at the University of Illinois is using butterflies and snake scales as a blueprint for creating a new surface that will be used for ‘fluid and light manipulation’. Source: UNIVERSITY OF ILLINOIS DEPARTMENT OF[…]

    Read more...

  • Star Wars hologram soon to be a reality thanks to BYU engineers

    Feb 19, 2018 | 06:40 am

    Star Wars hologram soon to be a reality thanks to BYU engineers “Help me Obi Wan Kenobi, you’re my only hope”. - Princess LeiaIn 1977, science fiction fans were treated to the very first Star Wars film. Years later, the series has branched off into comics, novels, more films, animation shows, and more. But back in ‘77 when Princess Leia spoke her very first words in the series, R2-D2, the robot relaying Leia’s three-dimensional recorded message, showed the world what the future of holograms could be.Source: YouTubeA team of engineers at Brigham[…]

    Read more...

  • Online and Uber-like: The clear future for universities and institutions

    Feb 19, 2018 | 06:32 am

    Online and Uber-like: The clear future for universities and institutions The world is still looking for the most effective way of educating and training people. Privately owned universities and institutions are keeping their eyes on initiatives in the business sector.Source: Foter.comUniversities are looking towards the most efficiently built organizations of the last decade, noticing how they have construed to scale up. With the arrival of the internet and lower cost technologies, institutions have had to formulate new strategies. They have created online platforms for their students, saved money by reducing[…]

    Read more...

Go to top